Как работает дискоконусная антенна. Дискоконусная антенна своими руками Основные технические характеристики

Так, два проводника диаметром по 2 мм на расстоянии 25 мм с воздушным промежутком имеют сопротивление 386Ω


Возьмем для примера короткую линию 0.3λ (забегая наперед скажем, что это будет половина оптимального расстояния разноса этажей, т.е. это будет длина линии от одного из этажей до тройника сложения на фидер) и посмотрим как она трансформирует собственное сопротивление излучения вибратора в диапазоне частот.

Одна линия 25/2 мм (386Ω), вторая 25/1 мм (469Ω) и третья вдвое длиннее 25/2 мм (386Ω) для сравнения:

Синим цветом (Direct) обозначено собственное комплексное сопротивление конусного вибратора BowTie при прямом подключении фидера.

Как видим, собирающая линия имеет очень сильное влияние на результирующий импеданс. Причем коэффициент трансформации в меньшей мере зависит от сопротивления трансформатора, а в большей от его длины (соотносимо с длиной волны). Т.к. для разных частот один и тот же отрезок трансформатора представляет очень разную длину.

Для расчета этого сопротивления существует формула


Когда ZA=Z0, тогда Zin=Z0. Согласованная с источником линия не вносит изменения в результирующий импеданс.
В остальных случаях Z0 умножается на коэфициент, который зависит от f*L (т.е. от длины волны) и зависит от ZA и ZO

Длина собирающих линий в синфазной решетке теоретически может быть любой (лишь бы равной, чтобы сигналы приходили синфазно и складывались), но из технологических побуждений рационально выполнять их кратчайшим путём, соединяя этажи по прямой. При таком подходе длина линии будет задана исходя из оптимального расстояния между этажами, а улучшать согласование придётся только варьируя сопротивление линии: изменяя диаметр проводников или расстояние между ними.

При построении 3-х и более этажей, выполнять независимые линии от каждого следующего этажа к сумматору технологически очень непрактично. К счастью, складывать сигнал от соседних этажей можно непосредственно на клеммы соседа. Т.к. этажи размещаются примерно на длине 1/2λ между собой, то при прохождении по собирающей линии длиной 1/2λ фаза сигнала изменяются на противоположную на 180 градусов. Чтобы такие сигналы суммировались, а не взаимоуничтожались, подключать проводники необходимо в противофазе. Все этажи подключаются между собой только в противофазе, линиями внахлёст. Исключение составляет точка запитки решетки (фидер, балун), т.к. он находится на равном удалении от этажей (не обязательно кратчайшим путём) то сигнал на нём будет синфазный при подключении не внахлёст, а прямиком.

Форма диаграммы направленности (ДН) синфазной антенной решетки определяется ДН антенн, составляющих решетку, и конфигурацией самой решетки (число рядов, число этажей и расстояния между ними).

При двух ненаправленных антеннах, размещенных рядом на 1/2λ (между осями антенн), ДН в горизонтальной плоскости имеет вид восьмерки, а прием с боковых направлений, перпендикулярных главному, отсутствует. Если увеличивать расстояние между антеннами, ширина главного лепестка диаграммы направленности уменьшается, но появляются боковые лепестки с максимумами в направлениях, перпендикулярных главному.

При расстоянии 0.6λ уровень боковых лепестков составляет 0,31 уровня главного лепестка, а ширина ДН по половинной мощности уменьшается в 1,2 раза относительно решетки с расстоянием между антеннами, равным 2/2.

При расстоянии 0.75λ уровень боковых лепестков увеличивается до 0,71 уровня главного, а ширина ДН уменьшается в 1,5 раза. При расстоянии 1λ уровень боковых лепестков достигает уровня главного лепестка, но ширина диаграммы направленности уменьшается в 2 раза по сравнению с расстоянием между антеннами в полволны.

Из этого примера видно, что целесообразнее выбирать расстояния между антеннами, равными длине волны. Это обеспечивает наибольшее сужение главного лепестка диаграммы направленности. Наличия боковых лепестков опасаться нет нужды, так как при использовании в составе решетки направленных антенн они с направлений, перпендикулярных главному, сигналов не принимают.

Это общие рекомендации, для любого типа антенн. Так обычно монтируют антенны при их сложении через коаксиальный кабель. Отрезки гибкого кабеля произвольной (лишь бы одинаковой) длины укладываются произвольным образом. Изменение расстояния между антеннами никак не нарушает согласования и суммирования, поэтому можно выбирать любое расстояние от 0.5 до 1λ.

Рассмотрим конкретную ДН решетки из 2 вибраторов BowTie с рефлектором в зависимости от разноса между этажами.

2-Bay radiation pattern for 0.4 - 1λ vertical stack


Для 2-этажной решетки из конусных антенн можно выбрать любое расстояние от 0.4 до 1λ. Но при увеличении разноса сверх 0.6λ увеличивается также размер экрана и длина несущей траверсы, т.е. растет расход материала, вес и ухудшается прочность, без роста параметров.

Кроме того, как мы уже видели, увеличение длины несогласованной собирающей линии существенно влияет на её коэффициент трансформации. Поэтому из практических побуждений 2-этажные решетки проектируют с минимальным разносом 0.5-0.6λ.

Для 3 и более этажей сбор сигналов нерационально проводить индивидуальными линиями (они должны быть в промежутке между вибратором и рефлектором, вдали от металлических предметов) от каждого этажа к тройнику, а конструктивно намного проще суммировать соседние этажи напрямую на вибратор. Если расстояние не будет кратным 0.5λ, то задержка сигнала в линии не будет кратна 180 градусов и сигналы не будут складываться в фазе. Поэтому для прямого соединения по кратчайшему пути подходит разнос только 0.5 или 1λ. При 0.5λ линии должны идти внахлест (для поворота фазы на 180 градусов), при 1λ напрямую (без поворота фазы). Из практических побуждений, описанных для 2-этажной решетки, разнос 1λ не применяют.

Часть VI / Согласование с помощью трансформатора сопротивлений

Для преобразования сопротивления антенны в сопротивление фидера применяются три типа конструкций:
1) Широкополосные трансформаторы с фиксированным коефициентом преобразования. Выполняются обычно на ферритовых сердечниках или печатным способом на микрополосковых (patch) линиях. Коэффициент трансформации определяется конфигурацией обомоток и соотношением числа витков в них.
2) Большое разнообразие шунтовых схем с L и C элементами.
3) Трансформаторы с применением отрезков волновых линий

Недостатком широкополосных трансформаторов является стоимость их изготовления и сложность получения некратных (произвольных) коэффициентов трансформации. Низкую стоимость можно получить только при массовом производстве, а значит на ограниченный ассортимент. Де-факто доступными можно назвать только балуны 4:1. Необходимость производства балуна на другой коэффициент (6:1, 8:1) ставит крест как в серийном производстве, так и для домашних самоделок.

Недостатком шунтовых схем являются сложность изготовления (как и у нестандартных балунов), узкополосность и необходимость подстройки образца по приборах.

Отрезки волновых линий не сильно усложняют конструкцию вибратора (могут быть его конструктивным продолжением), упрощают технологический монтаж коробки с балуном (или комбинированной платой Балун+МШУ) за счет выноса коробки за пределы разрыва вибратора. Могут быть рассчитаны и изготовлены на преобразование почти любого сопротивления в любое подбором длины отрезка и его собственного сопротивления.

Рассмотрим детальнее фундаментальную формулу преобразования сопротивлений, приведенную в предыдущем разделе

Из этой формулы следуют ряд наблюдений:

  • При длине линии 0 или кратной 1/2λ, результирующее сопротивление равно сопротивлению источника, линия не вносит изменения в импеданс, потому что тангенс углов кратных 180 равен нулю
  • При длине линии со сдвигом 1/4λ от кратных 1/2λ - результирующее сопротивление изменяется максимально, потому что тангенс углов 90 и 270 стремится к бесконечности
  • Линия с сопротивлением равным сопротивлению источника (согласованная) не вносит изменения в результирующий имепаданс при любой длине линии
  • Линия фиксированной геометрической длины будет вести себя по разному в широкой полосе частот при изменении длины волны. Если с изменением частоты длина линии в лямбдах приближается к 0 или кратна 1/2λ, то вклад линии снижается, если длина приближается к 1/4λ - вклад линии резко растет. Это свойство потенциально можно использовать для выравнивания собственного импеданса вибратора

Создадим Excel для работы с этой формулой: goo.gl/w8z9U2 (Google Docs)

Допустим наш вибратор BowTie имеет на частоте первого резонанса сопротивления Z = 750 +j0.
Для преобразования 750 Ом в 300 (для подключения к балуну 4:1) можно применить симметричный волновод длиной всего 0.1λ (5 см для частоты 600 МГц) сопротивлением 231 Ом.
Используя приведенный выше калькулятор coax_calc можно подобрать комбинацию диаметра проводов и расстояния между ними для получения 231 Ом.

Часть VII / Практические примеры использования

Сфера применения конусных антенн очень ограничена. На частотах ниже 300 МГц такие антенны имеют неприемлемо большие размеры по сравнению с полуволновым диполем, который имеет размах 0.5λ против 1λ.

На частотах выше 800 МГц почти нет радиотехнологий, где нужны высоконаправленные антенны. CDMA, GSM, GPS, LTE, WiFi нужны или всенаправленные антенны у абонента, или секторные антенны четко предсказуемой формой сектора на стороне оператора.
Небольшой спрос на высоконаправленные антенны существует среди стационарных абонентов сотовой связи. Используя радиаторы BowTie теоретически можно изготовить антенны LTE-700, CDMA2000/LTE 800 Mhz, GSM/UMTS/LTE-900 а также CDMA2000/LTE 450 Mhz. Промышленность таких антенн не выпускала, а в Части VIII мы попытаемся такую антенну сконструировать, заодно проверив насколько работоспособна и конкурентоспособна такая конструкция.

На частотах выше 2 ГГц конусные антенны можно выполнять только печатным способом (микрополосковые), преимуществ в параметрах или простоте конструирования и изготовления по сравнению с патч-антеннами на таких частотах нет.

В диапазоне между 300 и 800 МГц работает только телевещание: PAL/SECAM/NTSC (аналоговое) или DVB-T/T2/T2 HD (цифровое).

Именно рынок абонентских антенн ТВ вещания принёс конусным антеннам невиданную популярность.

В 1960-ых годах такие антенны приобрели большую часть рынка в географически больших странах: Канада и США. Большие площади, преимущественно равнинные обусловили более низкую плотность строительства телебашен по сравнению с Европой. При больших радиусах покрытия требовались антенны повышенного усиления на 10...16 дБ. Добиться такого усиления из одиночных антенн волновой канал очень проблематично, а применять синфазные решетки из 2-4 антенн волновой канал сложно и дорого, по сравнению с простотой многоэтажной конусной антенны с рефлектором.

Широчайшему распространению таких антенн в Восточной Европе способствовало появление большого количества маломощных ТВ каналов в диапазоне ДМВ (1-5 кВт по сравнению с 20-25 кВт у трёх каналов центрального телевидения), для приёма которых нужны антенны с усилением 10+ дБ, а также широкополосность с захватом (пусть и с низким усилением) участков МВ диапазона, что снимало необходимость содержать дополнительную антенну МВ диапазона, дополнительные кабели, усилители, сумматоры и т.д.

Представляем вниманию читателя 7 дизайнов антенн, тщательно оптимизированных (с помощью Python скриптов с использованием NEC-engine для моделирования) под максимизацию среднего усиления в диапазоне 470-700 МГц (21-50 каналы ДМВ) и минимизацию среднего КСВ (SWR). На 2017 год такие антенны актуальны только для приёма DVB-T/T2.

Без рефлектора:

1) 2-Bay: 50х55 см, усы 8х279 мм

С рефлектором / экраном:



6) 4-Bay: 102x86 см
7) 6-Bay: 152x84 см

Gain, SWR




Усредненное в полосе 470-700 МГц усиление антенн составляет от 7 до 42 раз или от 8.5 до 16.3 dBi.
В третьем столбце приведена площадь фронтальной проекции в м2, а в последнем - удельное усиление, в разах на 1 м2 фронтальной площади.

Для сравнения, антенна волновой канал (Uda-Yagi), специально оптимизированная под этот же диапазон, имеет среднее усиление 10 dBi (от 8.1 до 12.1) в конфигурации 1R-5D (1 рефлектор, 5 директоров, петлевой вибратор, 624x293x45 мм) и 12.7 dBi в конфигурации 2R-15D (2 рефлектора, 15 директоров, петлевой вибратор, L=1621 мм)

Выводы: при проектировании антенн со средним усилением до 10 dBi, традиционные дипольные антенны волновой канал проще, компактнее, легче, проще в изготовлении (как кустарном так и промышленном) и долговечнее. Если требуется усиление >10 dBi, то добавление директоров к Uda-Yagi очень мало добавляет направленности (1R5D = 10 dBi, 2R10D = 11.5 dBi, 2R15D = 12.7 dBi), тогда как даже 2-этажная конусная антенна с рефлектором даёт среднее усиление 13.1 dBi.

Когда требуется среднее усиление 15-16 dBi, то альтернативы 4 и 6-этажным конусным антеннам нет. В сегменте антенн с усилением 10-13 дБ, 2-этажная конусная антенна компактнее и проще чем длинные волновые каналы на 10 и более директоров).

Вот общий вид и ДН семи антенн, в порядке пронумерованном выше:

3D View, Pattern @ 600 MHz

1) 2-Bay: 50х55 см, усы 8х279 мм




2) 3-Bay: 60х50 см, усы 12х241 мм



3) 3-Bay (1 small): 80х65 см, усы 4х276, 4х302 и 4х190 мм



4) 1-Bay: 25х72 см (50+2х12.5 см бортики), усы 4х222 мм (из примера в статье)



5) 2-Bay: 86x57 см, усы 4х254 мм


6) 4-Bay: 102x86 см



7) 6-Bay: 152x84 см




Все 7 моделей в формате *.NEC можно скачать и посмотреть детальные размеры (в т.ч. создать исполнительные чертежи) с помощью бесплатной программы 4NEC2 .

Disclaimer : 6 представленных антенн UHF-TV разработаны участниками форума DigitalHome Canada под руководством пользователей holl_ands и mclapp .

Часть VIII / Анализ промышленного образца антенны

4-этажные антенны типа ASP-8 приобрели широчайшую популярность в СНГ.
У этих антенн есть множество модификаций, которые незначительно отличаются между собой (в мелочах).
Более старые антенны имели более длинные усы верхнего этажа (и маркировались как антенны 47-860 МГц).
У новых антенн (которые продаются в 2017) верхний этаж немного короче чем у старых, вероятно для лучшей работы в ДМВ, где сейчас работают DVB-T/DVB-T2.

Для анализа сняты размеры с такого образца стоимостью $3.6 (по цене - как 3-элементная комнатная Yagi Волна-1)

Антенна имеет такие элементы:
1) Экран-рефлектор 75х50 см, 36 см ширина центральной части, боковые бортики 2х8 см отогнуты на 4.5 см вперёд.
Экран состоит из 2х6 горизонтальных проводников диаметром 2.1 мм, каждая из двух групп имеет высоту 33 см, а между ними (в центральной части антенны) зазор 9 см.
Оффсет экрана от вибраторов - 85 мм

2) Зазор между усами вибраторов на всех 4-х этажах 34 мм (по центрах линий волноводов)

3) Верхний вибратор 4х254 мм усы диаметром 5 мм, с углом раскрыва 45 градусов

4) Три нижние этажа - вибраторы 4х140 мм усы диаметром 4 мм, с углом раскрыва 50 градусов

5) Собирающая двухпроводная линия из стальных проводников диаметром 2.1 мм, расстояние между проводниками 34 мм в точках входа к креплению вибратора. При входе в коробку питания 30 мм снизу и до 72 мм сверху.

6) Расстояние между этажами (1-ый - верхний): 1-2 = 183 мм, 2-3 = 192 мм, 3-4 = 178 мм

7) Длина соединительных линий: 200 мм между 1-2 и 3-4. 84+132 = 223 мм между этажами 2-3. Клеммы коробки питания расположены на 84 мм от верхнего и 132 мм от нижнего этажа.

8) На каждом этаже есть траверса с 5 короткими директорами.

9) Несущий хребет антенны - алюминиевый пустотелый профиль 12х6 мм на расстоянии 28 мм позади волноводов

Сразу скажем, что траверсы с 5 директорами не имеют вообще никакого влияния на антенну на частотах до 900 МГц. На частотах выше 800 МГц они добавляют лишь +0.1 dB к направленности.
Их функция - исключительно декоративная - разрушать антенну дополнительными механическими нагрузками и привлекать птиц для разрушения антенны.

Представим основные составляющие геометрии антенны в длинах волн, на разных участках заявленного диапазона работы

Размеры всех элементов у этой антенны крайне странные: длины усов, разнос между этажами, ширина рефлектора, умышленное смещение (расфазировка) точки подачи питания.

Рассмотрим свойства отдельных вибраторов (с учетом влияния экрана).
Bay-1 : Верхний длинный вибратор имеет резонансную частоту 490 МГц и сопротивление 850Ω. Второй резонанс на 780 МГц и сопротивление 31Ω. На частотах ниже 300-320 МГц сопротивление излучения R мизерное, можно считать что 320 МГц нижняя рабочая частота. Усиление одного этого этажа достигает 10 dBi, но диаграмма направленности немного (на 1 дБ) смещена вниз на 30 градусов, как свисающий живот

Bay-2 : Второй сверху вибратор имеет резонансную частоту 780 МГц и сопротивление 515Ω. Второй резонанс лежит выше 1000 МГц. На частотах ниже 460 МГц сопротивление излучения R мизерное, можно считать что 460 МГц нижняя рабочая частота. Усиление одного этого этажа достигает 11 dBi, но диаграмма направленности СИЛЬНО смещена вниз на 35 градусов. Усиление вперёд всего 6 dBi, а вниз на 35 градусов - до 11.1 dBi

Bay-3 : Третий сверху вибратор имеет резонансную частоту 790 МГц и сопротивление 620Ω. Второй резонанс лежит выше 1000 МГц. На частотах ниже 440 МГц сопротивление излучения R мизерное, можно считать что 440 МГц нижняя рабочая частота. Усиление одного этого этажа достигает 10.6 dBi, форма ДН не искажена, а смотрит вперёд

Bay-4 : Нижний вибратор имеет резонансную частоту 810 МГц и сопротивление 570Ω. Второй резонанс лежит выше 1000 МГц. На частотах ниже 440 МГц сопротивление излучения R мизерное, можно считать что 440 МГц нижняя рабочая частота. Усиление одного этого этажа достигает 9.6 dBi, форма ДН искажена вверх на 20 градусов (на 2-3 дБ сильнее чем вперёд). Второй пузырь направленности направлен вниз на 30 градусов.

Производитель сделал весьма странный выбор длины 3 усов на 3 этажах - с резонансом вблизи 800 МГц, а не посредине диапазона ДМВ (в промежутке 600....700 МГц).
Также очень странный выбор разноса этажей и длин собирательных линий. Длина волноводов, которые идут внахлёст - отцентрована на 750 МГц. На частоте 470 МГц задержка фазы в такой линии 112 вместо 180 градусов.

ASP-8, 3D, Gain, SWR, Pattern

















Как видим, параметры антенны очень нестабильны в широкой полосе заявленного диапазона частот. В некоторых участках согласование КСВ<2 (приемлимо), в некоторых КСВ=2...3.2 (приемлимо при нагрузке на МШУ, иначе в кабеле снижения резко растет затухание), а на 21-м канале (470 МГц) КСВ=3.6
Диаграмма направленности тоже нестабильна и имеет локальные аномалии. У этого экземпляра аномалия на 565 МГц (+30/-40 МГц) - ДН разваливается вверх и вниз, излучение вперед всего 5 dBi

Кроме этой фрико-антенны, проанализируем популярную в Северной Америке антенну ChannelMaster 4251 из 2 этажей.
Её габариты значительно меньше: 38х35 см (против 75х50 см)

CM4251, Gain, SWR, 3D





Усиление плавно растет с 8 до 10 dBi, форма ДН идеально ровная, КСВ умеренный. Никаких резонансных аномалий между 400 и 900 МГц нет.
CM4251 с лобовой проекцией в 2.8 раза меньше чем у ASP-8, работает примерно так же, но без аномальных участков АЧХ и без бросков КСВ.

Обе антенны существенно уступают 2-этажной антенне из статьи, оптимизированной с помощью САПР.
Оптимальные габариты для 2-этажей - 86x57 см (86 - ширина), это экран немного больше чем у «польской сушилки», но повернутый набок.
Попытки уместить на такой площади 4 этажа - очень неудачны и носят только маркетинговый характер.
Американский вариант хоть и не имеет выдающегося усиления - зато малогабаритный.

Часть XIX / Расчет высоконаправленной приёмопередающей антенны

Конусный радиатор с рефлектором позволяет теоретически изготавливать антенны с усилением порядка 10 dBi для 1 этажа, 12-13 dBi для 2 этажей, 14-16 dBi для 4 этажей, 16-18 dBi для 6 этажей.
При работе с горизонтальной поляризацией, синфазная решетка будет иметь вертикальную компоновку. При 2 этажах, диаграмма направленности будет одинаковая как по вертикали так и по горизонтали: затухание 3 dB при углах ±25 в любом направлении от главного луча.
При 4 и 6 этажах, избирательность по азимуту не изменяется, а по вертикали луч становится очень узким, так при 16 dBi затухание 3 dB уже при ±8 градусов по вертикали.

Отличительной особенностью приемопередающих антенн от чисто приёмных (телевизионных) являются:
- сопротивление фидера 50Ω
- повышенные требования к низкому КСВ

Чисто приёмные антенны более толерантны к рассогласованию (высокому КСВ) потому что потери в кабеле (в т.ч. дополнительные потери от высокого КСВ) можно нивелировать установкой МШУ (LNA) прямо в антенну на клеммы вибратора.

Потери мощности сигнала на входу в МШУ принято оценивать по эквивалентному возрастанию фактора шума (ухудшению SNR) от рассогласования.
Из формулы

получаем формулу
Nf (effective) = Nf (nominal) + 10*log((2+SWR+1/SWR)/4)

КСВ=2 и КСВ=3 равноценно ухудшению фактора шума LNA на 0.5 и 1.25 dB соответственно.

Приемлимым для передатчиков КСВ принято считать КСВ<2, а хорошим КСВ<1.5

Используя теоретические знания из предыдущих глав, попробуем расчитать 2-этажную синфазную решетку с хорошим КСВ на нагрузку 50Ω.

В качестве примера выберем диапазон 821-894 МГц (858 ±37 МГц), в котором работает стандарт CDMA2000/EV-DO.

Антенну будем рассчитывать для работы на частотах близких к резонансным, т.к. при большой мнимой части комплексного сопротивления КСВ будет далеким от 1 даже если фидер согласовать с комплексным сопротивлением.

Реальное сопротивление излучения ® конусного вибратора, как мы уже знаем, имеет порядки 400-1000Ω и зависит от трех главных факторов:
- диаметра проводника вибратора (сильная обратная зависимость, чем толще проводник тем ниже R)
- расстояния до рефлектора (сильная прямая зависимость, чем дальше от экрана тем R выше)
- наличия рядом других вибраторов решетки (слабая зависимость)

Такой порядок величины R очень далёк от 50Ω, поэтому использование трансформатора сопротивлений неизбежно.
Даже если бы R=50Ω, всё равно необходимо использовать Bal-Un 1:1, т.к. вибратор BowTie симметричный, а коаксиальный кабель питания ассиметричный.
Проще всего использовать комбинированный BalUn-трансформатор.
При использовании трансформатора 4:1 необходимо рассчитать антенну с выходом 200Ω, при использовании трансформатора 6:1 - на 300Ω.

При сложении сигнала с 2 этажей на тройник, выходное сопротивление решётки в 2 раза меньше сопротивления этажей. Т.е. необходимо рассчитать одиночный вибратор на 400Ω или 600Ω.
Собирательные линии должны иметь такое же сопротивление, как одиночный вибратор, т.е. 400Ω или 600Ω, иначе они будут работать как трансформаторы с непредсказуемым эффектом.

Используя программу coax_calc попробуем смоделировать симметричный волновод на 400Ω и 600Ω
Чтобы получить 600Ω, даже при тонком проводнике d=1 мм нужен разнос 74-75 мм. Это и достаточно большой разнос (соотносительно с общей шириной вибратора порядка 25-30 см), и достаточно тонкий (нежесткий) проводник. Для такого большого разноса также увеличивается и защитная зона, где не должно быть металлических предметов.

Для получения 400Ω размеры линии достаточно удобны: 35 мм разнос, с проводом d=2.5 мм (рапространенный в электрике провод 5 мм2)

Вариант 400Ω также удобнее, потому что балуны 4:1 широко распространены по копеечной стоимости, а балун 6:1 придётся изготавливать специально.

Расчет начнём с экраном шириной 1λ на центральной частоте (349 мм для 858 МГц)

Для снижения сопротивления R до 400Ω требуется взять как можно более толстый проводник для вибратора, или удалить вибратор от экрана. Для технологического удобства выберем диаметр проводника усов 6 мм (такой диаметр имеют верхние усы в «польской сушилке»). При длине усов порядка 13-15 см они будут иметь достаточную жесткость. Более толстые трубки порядка 10 мм будут и дороже и менее удобны в изгибе и креплении.

Создаем геометрическую модель антенны, в которую включаем:
- экран 1х1λ (из 21 горизонтального проводника, диаметром 2 мм, как в строительной оцинкованной сетке, с шагом 0.05λ)
- зазор между усами вибратора 35 мм
- вибратор из усов диаметром 6 мм, и его зеркальная копия на расстоянии 0.6λ (±0.3λ от центра экрана)
- угол раскрыва усов 33 градуса

В несколько итераций подбираем смещение от экрана, чтобы получить на центральной частоте (858 МГц) R=400Ω, а длину усов после каждой итерации подбираем, чтобы получить X=0Ω (мнимую часть сопротивления сделать 0, т.е. настроить антенну на резонанс)

После 2-3 итераций получаем длину усов 0.4442λ (138.5 мм), смещение до рефлектора 0.2455λ (86 мм)

Проверяем импеданс (R, Z), КСВ в широком диапазоне частот (пока без волноводов, с виртуальной запиткой вибраторов двумя источниками по 400Ω).

3D, Pattern, SWR






Добавить метки

(Антенна может быть использована для цифрового телевидения )

Мы выяснили от чего зависит дальность приема

Рассмотрели вопрос выбора кабеля

Подключили антенну к телевизору с помощью штекера

Из чего делать антенну (и вибратор) мы выяснили

Какие бывают рефлекторы мы рассматривали

Выбрали метод крепления стрелы антенны

Сборка антенны. Крепление элементов антенны

Крепление антеннымы рассмотрели

Согласование вибратора промышленной антенны дециметрового диапазона

Все вопросы изготовления антенн и конструкции антенн смотрите

Дискоконусная антенна. Широкополосная антенна.

Думаю, что вам интересно будет познакомиться с дискоконусной широкополосной антенной, имеющей очень!

Большую ширину принимаемых частот. Эта простая антенна не чувствительна к отклонениям размеров при ее

Изготовлении.

Такие дискоконусные антенны чаще всего применяют в метровом и дециметровом диапазонах волн. Дискоконусная

Антенна состоит из металлического конуса, над вершиной которого расположен металлический диск. В таком

Исполнении рис 1а эти широкополосные антенны используют в дециметровом диапазоне.

Если Вам нужны программы для расчета антенн аналогового и цифрового телевидения, мобильного

телефона , то их описание и

В метровом диапазоне волн конус и диск заменяют металлическими прутками. Обычно на них ставят от 6 до 12

стержней рис 1b . Иногда диск дискоконусной антенны выполняют из металлической сетки рис 1с. Нас, думаю,

большевсего будет интересовать дискоконусная, вертикальная антенна для дециметрового диапазона

(и цифрового ТВ).

Рис. 1 Дискоконусная антенна. Широкополосная антенна. Вертикальная антенна. Простая антенна.

Телевизионный кабель проходит внутри конуса. Экран кабеля паяется к вершине конуса, а центральная жила к

центру диска. На практике необходимо закрепить на конусе диск, изолировав друг от друга (недопуская контакта

этихметаллических частей через элементы крепления). Для этого использовать диэлектрические материалы.

Рис. 2 Дискоконусная антенна. Широкополосная антенна. Вертикальная антенна. Простая антенна.

Оптимальные теоретические размеры широкополосной дискоконусной антенны:

d = 0,7Cmax

L = 0,25 λ ... 0,33 λ

S = 0,3Cmin

A = 50...70 градусов

Cmax = L

Обычно все размеры антенн дают в долях длины волны сигнала. Как правило, берут среднюю длину волны,

Принимаемого диапазона. Об этом я говорил многократно, например, в статье .

В радиолюбительской практике угол А берут равным 60 градусов. Теперь размеры дискоконусной, широкополосной,

Вертикальной антенны для диапазона 100...600 МГц:

Конус - листовой металл, например, медь. Cmax = 730 мм; Cmin = 30 мм; L = 730 мм. Угол А - 60 градусов.

Диск - листовой металл. Диаметр d = 550 мм.

S = 10 мм. Входное сопротивление вертикальной антенны - 50 Ом.

Телевизионный кабель паяем непосредственно к широкополосной дискоконусной антенне.

Если экран (или фольгу) кабеля нельзя паять, то плотно обмотайте его медным проводом и зафиксируйте пайкой.

Затем паяйте эти провода. Места пайки хорошо герметизировать.

Диск и конус соединить в единую конструкцию через изоляторы. Если диск или конус из таких металлов, что нельзя

К ним припаять кабель, то приклепайте (прикрепите) к ним клеммы, и паяйте кабель к клеммам. Места пайки хорошо

Герметизировать.

Если нет возможности изготовить конус и диск широкополосной, вертикальной антенны из листового материала, то

Примените металлические прутки. Будет достаточно по 8 стержней для диска и конуса. Причем, в центре все прутки

Будут крепиться к одной металлической пластине. В конусе все прутки будут крепиться к металлической пластине

В виде шайбы. Длина прутков диска будет равна радиусу диска, а в конусе будет равна L .

Эта широкополосная, вертикальная, простая антенна перекрывает как метровый, так и дециметровый диапазоны

Частот. Но рассчитывать на усиление с этой широкополосной антенной не приходится. Вы получите широкую полосу,

Принимаемых частот, но заметного усиления не получите. Эту дискоконусную, вертикальную антенну можно

Применять в зоне уверенного приема с сильным сигналом при отсутствии помех и отраженных сигналов.

Если Вам нужны программы здесь.

Конус изготовляется в виде рупора из листа меди или какого-либо другого материала, который легко паять. Кабель питания проводится внутри конуса и его внешняя оплетка припаивается к конусу, а очищенный отрезок внутренней жилы длиной 100 мм - к металлическому диску. Диск удерживается в горизонтальном положении с помощью изолирующих подпорок.

Для установления дальних радиосвязей в диапазонах 144- 146 Мгц и особенно на 420-425 Мгц необходимо сконцентрировать излучение электромагнитной энергии в виде узкого луча и направить его возможно ближе к горизонту. При этом также необходимо иметь возможность устанавливать радиосвязи с корреспондентами, находящимися в различных направлениях от радиостанции при неподвижной антенне. Для такого случая антенна должна иметь в вертикальной плоскости диаграмму направленности в виде вытянутой восьмерки, а в горизонтальной - в виде окружности. Подобную диаграмму можно получить при исполнении биконической антенны (рис. 2), представляющей собой два металлических конуса, к одному из которых присоединена средняя жила кабеля, а к другому - его оплетка. Недостатком такой антенны является необходимость симметричного возбуждения.

Широкополосная биконическая дискоконусная антенна (рис. 3), в которой роль верхнего конуса выполняет диск, не требует симметричного возбуждения. В табл.1 приведены размеры дискоконусных антенн, рассчитанных для работы в любительских диапазонах.

Таблица 1

Размеры, мм

Рабочий диапазон

частот. Мгц

При выбранных размерах антенны работу желательно вести в области наиболее низких рабочих частот, так как при повышении рабочей частоты угол между направлением максимального излучения и горизонтом увеличивается. Питание антенны производится кабелем с волновым сопротивлением порядка 60- 70 ом без согласующих устройств. Диск изолируется от конуса, который может быть заземлен. Для работы в диапазоне 38-40 Мгц конус и диск выполняются из штырей диаметром 3 - 5 мм (рис.4). Максимальное расстояние между штырями не должно превышать 0,05L.

Литература:

  1. К.Ротхаммель. Антенны. Москва "Энергия". 1979г.
  2. Ф.Бурдейный и др. Справочник коротковолновика. Из-во ДОСААФ, Москва. 1959 г.

Приветствую коллег по увлечению! Вот мой сетапчик:

Для соединения приемника с антенной решил использовать хороший спутниковый кабель RG-6 Reeme. Тому было несколько причин:

  1. Низкие паспортные потери на 1000 МГц (Около 17 дБ на 100 м - один из лучших показателей среди коаксиалов)
  2. Дешевизна разъемов (к тому же были дома в наличии)
  3. У меня уже был проложен кабель на крыше к спутниковой антенне, в настоящее время он уже не использовался

Разница в волновых сопротивлениях особо не волновала, потеря 4% мощности сигнала из-за рассогласования это ничто по сравнению с возможными потерями от применения 50-омного кабеля с более высокими потерями.

Столкнувшись с выбором антенны для своего приемника остановился на трёх кандидатах: 6-элементная , Super и дискоконус. Все антенны были предварительно рассчитаны на 75 Ом и довольно точно изготовлены. Испытал поочерёдно Франклина, Super-J и дискоконус. Как ни странно выйграла дискоконусная антенна.

Пытался настроить Франклина смещая точки подключения на четвертьволновом шлейфе, но результаты всё равно не впечатлили. С Super-J такая же история. Дискоконус работал лучше. Вот мои предположения по этому поводу:

  1. Франклин - симметричная антенна, если просто подключить к нему несимметричную линию питания (коаксиальный кабель) то это искозит её диаграмму направленности, что естественно приведёт к снижению коэффициента усиления. Поидее нужно дополнительно применять симметрирующее устройство.
  2. Теоретический расчёт это хорошо но на практике нужного согласования можно и не добиться из-за влияния многих факторов, которые невозможно учесть в расчёте
  3. Точность изготовления. Если изготовить антенну с миллиметровой точностью то возможно она будет нормально работать.

А вот что понравилось в дискоконусе:

  1. Компактный размер. Высота около 80 мм, ширина около 70 мм
  2. Широкополосность. Антенна не нуждается в настройке и начинает работать сразу после сборки.
  3. Простота изготовления. Дискоконус не критичен к точности изготовления. Можно смело ошибаться +/- 5 мм в размерах (проверено практикой). В сантиметрах, конечно, ошибаться не нужно.

Чертёж с размерами:

Жирной точкой по центру диска обозначено место припайки центрального вывода F-разъема к диску. Диск и основание изготовлены из одностороннего фольгированного текстолита. Образующие конуса изготовлены из медного провода диаметром 2 миллиметра. Медь залудил, но это необязательно. Вот что получилось:

В процессе экспериментов выяснилось что даже небольшое увеличение длины кабеля приводит к ухудшению приёма. Т.к. антенна должна быть установлена на крыше и соединена 40 метровым кабелем, без усилителя не обойтись. Купил обычный спутниковый усилитель OPENMAX A04-20 на 20 дБ за 150 рублей. Ещё нужно было сделать так что бы вход приёмника был закорочен по постоянному току. В результате родилась вот такая схема:

По инжектору: Предохранитель защищает блок питания от возможных КЗ (например при обрыве кабеля). Защитный диод D1 защищает схему от грозовых перенапряжений (подсмотрел в схеме спутникового тюнера). При напряжении выше 24 В, пробивается и закорачивает схему. Конденсатор С2 - помехозащитный. Дроссель L1 - ВЧ фильтр, намотан на тороидальном ферритовом сердечнике (10 витков провода ПЭЛ 1,0)

Для закорачивания входа приемника по постоянному току использовал четвертьволновый короткозамкнутный шлейф из отрезка коаксиального кабеля. Схема отлично себя зарекомендовала. При испытаниях шлейф вообще никак не влиял на качество приёма. Длина отрезка коаксиального кабеля получилась 45 мм (учёл коэффициент укорочения и длину F-гнезда в разветвителе).

Приемник поместил в другой корпус и закрыл прозрачной крышкой из плекса. Так красивее и светодиоды хорошо видно. Общий вид конструкции:

Удачного радарспоттинга!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовой проект

по дисциплине Антенно-фидерные устройства

на тему: «Дискоконусная антенна»

Теоретические сведения о дискоконусной антенне

Расчет дискоконусной антенны

Список используемых источников

Теоретические сведения о д искоконусн ой антенн е

Главное преимущество дискоконусной антенны заключается в большой ширине полосы частот, в пределах которой ее можно питать по коаксиальному кабелю при соответствующих симметрии и импедансе.

Она сравнительно проста по своему устройству и нечувствительна к отклонениям от номинальных размеров. Поэтому такие антенны широко используются в коммерческом вещании, главным образом в диапазонах дециметровых и метровых волн.

Дискоконусная антенна состоит из металлического конуса с диском на вершине. Ее относят к антеннам с верхним питание, которые снабжены концевой емкостью в виде диска и конусообразным внешним проводником.

В своем исходном виде дискоконусные антенны применяются только в дециметровом диапазоне.

В диапазонах коротких волн используются преимущественно «скелетные» формы, когда металлические поверхности заменяются фигурами из металлических прутков, полос, трубок или проводов (рис. 1).

Тем самым обеспечивается существенное снижение веса и ветрового сопротивления антенны, а также затрат на ее изготовление без заметного ущерба для электрических свойств.

В антеннах промышленного производства на диск и конус идет как минимум по шесть, чаще по восемь, а в особых случаях и по двенадцать стержней.

Существуют варианты из тонкого провода или проволочной сетки, а также смешанные формы из сплошного диска и пруткового конуса.

Рис.1. Дискоконусная антенна и ее разновидности: а - однородная; б - скелетная; в - смешанная.

Принципиальная схема антенны представлена на рис.2. Коаксиальный кабель питания проложен внутри конуса к его вершине. Там экран припаивается к конусу, так что последний служит продолжением экрана. Внутренняя жила кабеля припаивается к центру диска, изолированного от конуса.

Рис.2 Принципиальная схема дискоконусной антенны

Дискоконусная антенна представляет собой вертикальный вибратор, который охватывает широкую полосу частот благодаря своей особой форме. Как и любой вертикальный вибратор, она, являясь круговым горизонтальным излучателем, характеризуется круговой диаграммой направленности в горизонтальной плоскости и всем знакомой диаграммой полуволнового вибратора в виде восьмерки в вертикальной плоскости. Последняя, впрочем, может быть в той или иной степени искажена в зависимости от рабочей частоты. Выше нижней частоты границы, на которую рассчитана антенна, КСВ в 50-омном коаксиальном кабеле не превышает 2 во всей частотной области с отношением пределов 1:10. Отсюда ясно, почему эту антенну широко ко используют для коммерческого вещания, где требуется часто менять рабочие частоты или охватывать значительную частотную область. Важнейшей из характеристик дискоконусной антенны оказалась нижняя предельная частота. Ее можно определить как наименьшую рабочую частоту, на которой величина КСВ в 50-омном коаксиальном кабеле не превышает 3. На частотах ниже КСВ быстро растет, а выше -постепенно убывает до своего среднего значения <1,5. Дискоконусная антенна электрически ведет себя как фильтр верхних частот с относительно крутым спадом частотной характеристики (рис. 3).

Рис.3 Типичная зависимость КСВ дискоконусной антенны с питанием по 50-лмному коаксиальному кабелю от рабочей частоты.

Результаты определений минимальной рабочей частоты зависят от длины конуса, диаметра диска и угла при вершине конуса. Как показали опыты Нейла, оптимальный диаметр диска составляет независимо от угла. Длина определяется. По мнению Кандояна (Kandoian), эта длина, приведенная к минимальной частоте, составляет приблизительно, но Нейл определил, что.

Их соотношение проясняют кривые частотной зависимости согласования, которые Нейл получил опытным путем. Они приведены на рис.4. в несколько измененном виде. По оси абсцисс отложена относительная частота причем как опорная длина соответствует. Каждому значению коэффициента отвечает длина, выраженная в, и для оценки этой длины достаточно умножить на 0,25. Бессмысленно надеяться на приемлемую величину КСВ для в 50-омном коаксиальном кабеле, если составляет. В этом случае при величина КСВ приближается к 3,5. Она быстро растет с уменьшением угла раскрыва конуса.

Рис.4 Согласование дискоконусной антенны и 50-омного коаксиального кабеля при различных углах раскрыва в зависимости от рабочей частоты

По кривым видно, что при любых указанных там углах раскрыва величина КСВ2, если выбрать, что соответствует длине, приведенной к максимальной рабочей длине волны. Одновременно служит множителем для, делая соотношение частоты и согласования более отчетливым. Кривые показывают, что сходство с фильтром верхних частот хорошо проявляются при больших углах раскрыва. При на кривой согласования появляется все больше промежуточных максимумов, нежелательных для многих применений. Скелетной конструкции антенны свойственны несколько иные значения, но ход соотношения между согласованием и частотой подчиняются той же тенденции.

Как правило, предпочитают угол раскрыва, при котором осевое сечение конуса является равносторонним треугольником, а. У дискоконусных антенн промышленного изготовления угол варьируется от до. ограничивает частотную область сверху таким образом, что она расширяется с уменьшением. Между и промежутком действует соотношение, зависящее от угла раскрыва.

Диаграмма направленности в плоскости является круговой и не зависит от угла раскрыва на всех рабочих частотах. По данным промышленности, отклонение от круговой формы в области рабочих частот не превышает ±5 дБ. Диаграмм направленности в плоскости на частоте во многом аналогична диаграмме полуволнового вибратора, когда главный луч перпендикулярен оси антенны. Угол раскрыва слабо влияет на диаграмму направленности в горизонтальной плоскости на частоте. С ростом рабочей частоты диаграмма деформируется, все больше отступая от первоначальной правильной двухлепестковой формы. Об этом свидетельствуют диаграммы в плоскости, полученные Нейлом при углах раскрыва, и (рис. 5). Максимум излучения на рабочих частотах до лежит преимущественно в горизонтальной плоскости при любых углах раскрыва. Уже на частоте диаграмма деформируется настолько, что напряженность поля в горизонтальной плоскости убывает на 1,5 дБ. У антенны с

на частоте потери доходят до 2 дБ, если привести их к максимуму излучения резонансного вертикального полуволнового вибратора.

Своими измерениями Нейл показал, что потери достигают 3,3 дБ на частоте и вновь убывают до 2,2 дБ на частоте. Судя по диаграммам направленности на более высоких частотах, верхний предел рабочей частоты определяется не столько согласованием, сколько практической применимости Е-диаграммы. Недаром поставщики антенн промышленного изготовления указывают в спецификациях существенно более узкие области частот, нежели те, которые могут быть обеспечены надлежащим согласование.

Рис.5 Нормированные диаграммы направленности в плоскости Е для дискоконусных антенн с углом раскрыва, и

Диаметр диска также влияет на диаграмму в плоскости Е на частотах выше. При большом диске излучение над горизонтом ослабляется, а при слишком малом искажается частотная характеристика, и излучение отклоняется в сторону конуса. Уже по диаграммам в плоскости Е хорошо видно, что усиление дискоконусных антенн, приведенное к полуволновому вибратору, равно нулю. Поэтому серьезные поставщики таких антенн либо вообще не указывают их усиление, либо дают значение 0дБ (по отношению к полуволновому вибратору) или 2,15 дБ (к изотропному излучателю).

Для питания описываемых антенн через коаксиальный кабель не требуется ни симметрирующего устройства (как в случае полуволнового вибратора), ни согласующие цепочки. Благодаря широкополосности дискоконусные антенны некритичны к размерам своих элементов и не нуждаются в настройке.

Расчет дискоконусной антенны

Используя , и приведенные в п.1 действующие соотношения между размерами элементов конструкции антенны и рабочими длинами волн, определим следующее:

Осевое сечение конуса (в связи с упрощением для реализации в программной среде MMANA-GAL);

Угол раскрыва;

Длина вибратора м;

Осевое сечение м;

Диаметр диска м;

Длина стержня мм.

Так как с помощью MMANA-GAL реализуют лишь проволочные модели антенн, то диск и конус будут задаваться отрезками проводников.

1. Диск задан с помощью четырех отрезков провода, так же реализован и конус.

Рисунок 1 - Внешний вид дискоконусной антенны, скелет элементов, которой состоит из 4 проводов

Рисунок 2 - Зависимость сопротивления от частоты дискоконусной антенны, скелет элементов, которой состоит из 4 проводов

Рисунок 3 -Зависимость КСВ дискоконусной антенны, скелет элементов, которой состоит из 4 проводов от частоты

Рисунок 5 - Зависимость усиления и отношения излучения вперед-назад дискоконусной антенны, скелет элементов, которой состоит 4 проводов

Рисунок 6 - Диаграммы направленности и таблица значений параметров дискоконусной антенны, скелет элементов, которой состоит из 4 проводов

Рисунок 7 - Диаграмма направленности на частоте 5 ГГц дискоконусной антенны, скелет элементов, которой состоит 4 проводов

Рисунок 8 - Диаграмма направленности на частоте 2,4 ГГц дискоконусной антенны, скелет элементов, которой состоит 4 проводов

2. Диск задан с помощью четырех отрезков провода, так же реализован и конус.

Рисунок 9 - Внешний вид дискоконусной антенны, скелет элементов, которой состоит 8 проводов

Рисунок 10 - - Зависимость сопротивления от частоты дискоконусной антенны, скелет элементов, которой состоит из 8 проводов

Рисунок 11 - Зависимость КСВ от частоты дискоконусной антенны, скелет элементов, которой состоит из 8 проводов

Рисунок 12 - Зависимость усиления и соотношения излучения вперед-назад от частоты дискоконусной антенны, скелет элементов, которой состоит из 8 проводов

Рисунок 13 - Диаграммы направленности и таблица значений параметров дискоконусной антенны, скелет элементов, которой состоит из 8 проводов

Рисунок 14 - Диаграмма направленности на частоте 2,4 ГГц дискоконусной антенны, скелет элементов, которой состоит 8 проводов

Рисунок 15 - Диаграмма направленности на частоте 5 ГГц дискоконусной антенны, скелет элементов, которой состоит 8 проводов

Вывод

В работе доказана, схожесть природ дискоконусных антенн однородного и скелетного исполнения. Однородная электрически ведет себя как фильтр верхних частот, это же было показано на графиках зависимости коэффициента стоячей волны в диапазоне 1-7 ГГц.

Список используемых источников

1. Ротхаммель К. Антенны: Пер. с нем. - 3-е изд., доп. - М.: Энергия, 1979

2. А.Л. Драбкин, В.Л. Зузенко, А.Г. Кислов/ Антенно-фидерные устройства, издание второе, переработанное и дополненное, М., «Советское радио», 1974

3. И. Гончаренко DL2KQ-EU1TT Компьютерное моделирование антенн. Все о программе MMANA, РадиоСофт, журнал «Радио», Москва, 2002

Подобные документы

    Создание модели антенны и оптимизация ее конструкции. Свойства антенны горизонтальной поляризации с учетом свойств поверхности земли в направлении максимального КНД и влияние диаметра проводников симметричного вибратора на рабочую полосу частот.

    курсовая работа , добавлен 23.02.2016

    Симметричная вибраторная антенна, построенная из симметричных вибраторов. Удобство при монтаже, обеспечение широкого рабочего диапазона частот. Описание конструкции антенны, результаты ее исследования. Влияния длины второго вибратора на согласование.

    контрольная работа , добавлен 14.01.2017

    Применение зеркальных антенн. Основные параметры параболоида. Расчет облучателя, параметров зеркала и остроконечного пирамидального рупора с диаграммой направленности. Размер рупора в Н-плоскости. Диаграмма направленности антенны, её конструкция.

    контрольная работа , добавлен 20.03.2011

    Определение коэффициентов усиления двойной рамочной антенны. Анализ системы из двух излучателей, обладающей однонаправленным излучением. Улучшение горизонтальной диаграммы направленности. Ввод коаксиального кабеля снизу в вертикальную трубу каркаса.

    курсовая работа , добавлен 13.10.2017

    Выбор типа и проектный расчет волноводно-щелевой антенны и направленного ответвителя по схеме Бете. Проведение расчета размеров антенны и необходимого диапазона частот. Разработка схемы диаграммы направленности и расчет действия РЛС в различных условиях.

    курсовая работа , добавлен 06.01.2012

    Расчет КПД фидера. Выбор типа и схемы питания приемной антенны, определение ее геометрических размеров и коэффициента усиления. Расчет диаграммы направленности антенны в горизонтальной и вертикальной плоскостях, коэффициента ее направленного действия.

    курсовая работа , добавлен 27.10.2011

    Изучение спиральной антенны дециметрового диапазона. Расчет геометрических размеров антенны и ее характеристик излучения. Основа работы цилиндрической спиральной антенны, определение диаметра его витков и шага намотки. Понятие круговой поляризации.

    курсовая работа , добавлен 06.01.2012

    Расчет диаграммы направленности волноводно-щелевой антенны, геометрических размеров и характеристик параболического отражателя; диаграммы направленности зеркальной антенны; элементов фидерного тракта; относительной погрешности ширины конструкции.

    контрольная работа , добавлен 16.06.2013

    Характеристика основных составляющих элементов антенны: активного полуволнового вибратора, рефлектора и директора. Процесс проектирования многоэлементной антенны типа "Волновой канал". Применение и принцип работы петлевого вибратора Пистолькорса.

    контрольная работа , добавлен 09.02.2012

    Описание принципа действия и особенности конструкции директорной антенны. Электрический и конструктивный расчет директорной антенны. Определение сопротивления рефлектора и диаграммы направленности. Разработка конструкции деталей антенны и узлов.

Похожие публикации