Виды пирамид и их свойства. Основные свойства правильной пирамиды

ПЛОЩАДИ ПОВЕРХНОСТЕЙ И ОБЪЕМЫ ГЕОМЕТРИЧЕСКИХ ТЕЛ

§ 114. ПИРАМИДА.

1. Определения.

Пирамидой называется геометрическое тело, ограниченное многоугольником, называемым основанием пирамиды, и треугольниками с общей вершиной, которые называются боковыми гранями.

Общая вершина всех боковых граней называется вершиной пирамиды.

Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на её основание (черт. 426).

Пирамида, у которой основанием служит правильный многоугольник, а высота проходит через центр основания, называется правильной. Боковые грани правильной пирамиды - равные между собой равнобедренные треугольники.

Выcота боковой грани правильной пирамиды, опущенная из вершины на сторону основания, называется апофемой пирамиды.

На чертежах 427, 428, 429 даны изображения и развёртки правильных пирамид: треугольной, четырёхугольной и шестиугольной. На чертеже 430 изображены египетские пирамиды.

Упражнения.

Сделать развёртки правильных пирамид, изображённых на чертежах 427, 428, 429, и изготовить из них модели пирамид.

2. Площадь поверхности пирамиды.

Чтобы определить площадь боковой поверхности пирамиды, надо найти сумму площадей всех её боковых граней.

Если к площади боковой поверхности пирамиды прибавить площадь её основания, получится площадь полной поверхности пирамиды.

Для краткости говорят: боковая поверхность пирамиды и полная поверхность пирамиды, опуская слово «площадь».

Упражнения.

1. В основании правильной пирамиды - треугольник со стороной в 12 см. Апофема пирамиды - 20 см.

Вычислить:
а) площадь основания,
б) боковую поверхность,
в) полную поверхность этой пирамиды.

2. Боковые грани правильной треугольной пирамиды - равносторонние треугольники. Сторона основания равна а см. Вычислить боковую и полную поверхность этой пирамиды (черт. 431).

3. Решить вторично эту задачу, расположив грани пирамиды в виде параллелограмма (черт. 432).

3. Объём пирамиды.

В старших классах средней школы доказывается, что объём пирамиды составляет 1 / 3 объёма призмы, имеющей одинаковое основание с пирамидой и одну и ту же высоту (черт. 433).

Следовательно, объём пирамиды вычисляется по формуле:

где V-объём пирамиды, S - площадь основания, H - высота пирамиды.

Для иллюстрации этой формулы рекомендуется сделать из картона прямую четырёхугольную призму и четырёхугольную пирамиду, имеющие равные основания и равные высоты. Если эту пирамиду заполнить, например, песком и затем пересыпать этот песок в сделанную призму, то песок заполнит только 1 / 3 вместимости призмы. Чтобы заполнить призму песком, необходимо трижды пересыпать в неё песок из заполненной пирамиды (черт. 434).

Упражнения.

По указанной выше формуле решить ряд задач по данным, помещённым в нижеследующей таблице.

), четырёхугольные и т. д. Пирамида является частным случаем конуса .

История развития пирамиды в геометрии

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объем пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит , а доказал Евдокс Книдский . Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал» , а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12 ).

Элементы пирамиды

Развёртка пирамиды

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга). Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру - её развёрткой.

Свойства пирамиды

Если все боковые рёбра равны , то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом , то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами

Описание сферы вокруг правильной пирамиды:
SD - высота пирамиды.
AD - радиус окружности, описывающей основание.
В - середина ребра боковой грани
С - точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS - радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D - центр основания
SF - апофема
ASD - биссекторная плоскость угла между боковыми гранями
BCE - биссекторная плоскость угла между основанием и боковой гранью
С - точка пересечения всех биссекторных плоскостей
CK=CD - радиус сферы вписанной в пирамиду

Сфера

Конус

Цилиндр

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды - вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой

  • Объём пирамиды может быть вычислен по формуле:
V = 1 3 S h , {\displaystyle V={\frac {1}{3}}Sh,} где S {\displaystyle \ S} - площадь основания и h {\displaystyle \ h} - высота; V = 1 6 V p , {\displaystyle V={\frac {1}{6}}V_{p},} где V p {\displaystyle \ V_{p}} - объём параллелепипеда; V = 1 6 a 1 a 2 d sin ⁡ φ , {\displaystyle V={\frac {1}{6}}a_{1}a_{2}d\sin \varphi ,} где a 1 , a 2 {\displaystyle a_{1},a_{2}} - скрещивающиеся рёбра, d {\displaystyle d} - расстояние между и , φ {\displaystyle \varphi } - угол между a 1 {\displaystyle a_{1}} и a 2 {\displaystyle a_{2}} ;
  • Боковая поверхность - это сумма площадей боковых граней:
S b = ∑ i S i {\displaystyle S_{b}=\sum _{i}^{}S_{i}}
  • Полная поверхность - это сумма площади боковой поверхности и площади основания:
S p = S b + S o {\displaystyle \ S_{p}=S_{b}+S_{o}}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
S b = 1 2 P a = n 2 b 2 sin ⁡ α {\displaystyle S_{b}={\frac {1}{2}}Pa={\frac {n}{2}}b^{2}\sin \alpha } где a {\displaystyle a} - апофема , P {\displaystyle \ P} -

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины - настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же - тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида - это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются - просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S - вершина, основание ABCD - квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY - параллельно AD . Поскольку ABCD - квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH - высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) - совпадает с началом координат;
  2. B = (1; 0; 0) - шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) - шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) - шаг только по оси OY .
  5. H = (0,5; 0,5; 0) - центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH - высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH - общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD - диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS - прямоугольный , причем гипотенуза AS - это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY - это точка H ;
  2. Одновременно точка H - центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH - половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение.

Рассмотрим многоугольник А 1 А 2 ...А n , который лежит в плоскости α, и точку P , которая не лежит в плоскости α (рис. 1). Соединим точку P с вершинами А 1 , А 2 , А 3 , … А n . Получим n треугольников: А 1 А 2 Р , А 2 А 3 Р и так далее.

Определение . Многогранник РА 1 А 2 …А n , составленный из n -угольника А 1 А 2 ...А n и n треугольников РА 1 А 2 , РА 2 А 3 РА n А n -1 , называется n -угольной пирамидой. Рис. 1.

Рис. 1

Рассмотрим четырехугольную пирамиду PABCD (рис. 2).

Р - вершина пирамиды.

ABCD - основание пирамиды.

РА - боковое ребро.

АВ - ребро основания.

Из точки Р опустим перпендикуляр РН на плоскость основания АВСD . Проведенный перпендикуляр является высотой пирамиды.

Рис. 2

Полная поверхность пирамиды состоит из поверхности боковой, то есть площади всех боковых граней, и площади основания:

S полн = S бок + S осн

Пирамида называется правильной, если:

  • ее основание - правильный многоугольник;
  • отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.

Пояснение на примере правильной четырехугольной пирамиды

Рассмотрим правильную четырехугольную пирамиду PABCD (рис. 3).

Р - вершина пирамиды. Основание пирамиды АВСD - правильный четырехугольник, то есть квадрат. Точка О , точка пересечения диагоналей, является центром квадрата. Значит, РО - это высота пирамиды.

Рис. 3

Пояснение : в правильном n -угольнике центр вписанной и центр описанной окружности совпадает. Этот центр и называется центром многоугольника. Иногда говорят, что вершина проектируется в центр.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой и обозначается h а .

1. все боковые ребра правильной пирамиды равны;

2. боковые грани являются равными равнобедренными треугольниками.

Доказательство этих свойств приведем на примере правильной четырехугольной пирамиды.

Дано : РАВСD - правильная четырехугольная пирамида,

АВСD - квадрат,

РО - высота пирамиды.

Доказать :

1. РА = РВ = РС = РD

2. ∆АВР = ∆ВCР =∆СDР =∆DAP См. Рис. 4.

Рис. 4

Доказательство .

РО - высота пирамиды. То есть, прямая РО перпендикулярна плоскости АВС , а значит, и прямым АО, ВО, СО и , лежащим в ней. Значит, треугольники РОА, РОВ, РОС, РОD - прямоугольные.

Рассмотрим квадрат АВСD . Из свойств квадрата следует, что АО = ВО = СО = DО.

Тогда у прямоугольных треугольников РОА, РОВ, РОС, РОD катет РО - общий и катеты АО, ВО, СО и равны, значит, эти треугольники равны по двум катетам. Из равенства треугольников вытекает равенство отрезков, РА = РВ = РС = РD. Пункт 1 доказан.

Отрезки АВ и ВС равны, так как являются сторонами одного квадрата, РА = РВ = РС . Значит, треугольники АВР и ВCР - равнобедренные и равны по трем сторонам.

Аналогичным образом получаем, что треугольники АВР, ВCР, СDР, DAP равнобедренны и равны, что и требовалось доказать в пункте 2.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему:

Для доказательства выберем правильную треугольную пирамиду.

Дано : РАВС - правильная треугольная пирамида.

АВ = ВС = АС.

РО - высота.

Доказать : . См. Рис. 5.

Рис. 5

Доказательство.

РАВС - правильная треугольная пирамида. То есть АВ = АС = ВС . Пусть О - центр треугольника АВС , тогда РО - это высота пирамиды. В основании пирамиды лежит равносторонний треугольник АВС . Заметим, что .

Треугольники РАВ, РВC, РСА - равные равнобедренные треугольники (по свойству). У треугольной пирамиды три боковые грани: РАВ, РВC, РСА . Значит, площадь боковой поверхности пирамиды равна:

S бок = 3S РАВ

Теорема доказана.

Радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м, высота пирамиды равна 4 м. Найдите площадь боковой поверхности пирамиды.

Дано : правильная четырехугольная пирамида АВСD ,

АВСD - квадрат,

r = 3 м,

РО - высота пирамиды,

РО = 4 м.

Найти : S бок. См. Рис. 6.

Рис. 6

Решение .

По доказанной теореме, .

Найдем сначала сторону основания АВ . Нам известно, что радиус окружности, вписанной в основание правильной четырехугольной пирамиды, равен 3 м.

Тогда, м.

Найдем периметр квадрата АВСD со стороной 6 м:

Рассмотрим треугольник BCD . Пусть М - середина стороны DC . Так как О - середина BD , то (м).

Треугольник DPC - равнобедренный. М - середина DC . То есть, РМ - медиана, а значит, и высота в треугольнике DPC . Тогда РМ - апофема пирамиды.

РО - высота пирамиды. Тогда, прямая РО перпендикулярна плоскости АВС , а значит, и прямой ОМ , лежащей в ней. Найдем апофему РМ из прямоугольного треугольника РОМ .

Теперь можем найти боковую поверхность пирамиды:

Ответ : 60 м 2 .

Радиус окружности, описанной около основания правильной треугольной пирамиды, равен м. Площадь боковой поверхности равна 18 м 2 . Найдите длину апофемы.

Дано : АВСP - правильная треугольная пирамиды,

АВ = ВС = СА,

R = м,

S бок = 18 м 2 .

Найти : . См. Рис. 7.

Рис. 7

Решение .

В правильном треугольнике АВС дан радиус описанной окружности. Найдем сторону АВ этого треугольника с помощью теоремы синусов.

Зная сторону правильного треугольника ( м), найдем его периметр.

По теореме о площади боковой поверхности правильной пирамиды , где h а - апофема пирамиды. Тогда:

Ответ : 4 м.

Итак, мы рассмотрели, что такое пирамида, что такое правильная пирамида, доказали теорему о боковой поверхности правильной пирамиды. На следующем уроке мы познакомимся с усечённой пирамидой.

Список литературы

  1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е изд., испр. и доп. - М.: Мнемозина, 2008. - 288 с.: ил.
  2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
  3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е изд., стереотип. - М.: Дрофа, 008. - 233 с.: ил.
  1. Интернет портал «Якласс» ()
  2. Интернет портал «Фестиваль педагогических идей «Первое сентября» ()
  3. Интернет портал «Slideshare.net» ()

Домашнее задание

  1. Может ли правильный многоугольник быть основанием неправильной пирамиды?
  2. Докажите, что непересекающиеся ребра правильной пирамиды перпендикулярны.
  3. Найдите величину двугранного угла при стороне основания правильной четырехугольной пирамиды, если апофема пирамиды равна стороне ее основания.
  4. РАВС - правильная треугольная пирамида. Постройте линейный угол двугранного угла при основании пирамиды.
Похожие публикации